

## **Building Materials**

STRIP BEARINGS
Structural Movements control Guide

## FR Series Elastomeric Strip Bearing

(Replaces old FR10 products)

# Based on BS 5400 -Part 9

(In Conformance to) 60 IRHD

Structural movements, due to various forces such as longitudinal, transverse and rotational, can effectively cause problems to structures such as building, bridge, tunnel, etc. One highly effective and efficient methods of dealing with these forces is the use of Elastomeric Bearing Strips. One of the key advantages of these strips is to isolate vibration in the structure; in line with this, it is important to note that natural rubber is very low in deformation over a constant load. This system, in contrast with other potential solutions, is inexpensive, with comparatively minimal effort required when it comes to installation.

The following table gives some information on the selection of FR Series:

| Type     | Width<br>mm | Height<br>mm | Maximum<br>Vertical Load<br>KN | Minimum<br>Vertical Load<br>KN | Maximum<br>Shear Deflection<br>(Along the Width)<br>mm | Vertical<br>Deflection<br>mm | Horizontal Force<br>Exerted<br>(On Structure)<br>KN | Rotation<br>(Across the With)<br>Rad |
|----------|-------------|--------------|--------------------------------|--------------------------------|--------------------------------------------------------|------------------------------|-----------------------------------------------------|--------------------------------------|
| FR100-5  | 100         | 5            | 800                            | 269                            | 3.5                                                    | 0.092                        | 81                                                  | 0.0027                               |
| FR150-5  | 150         | 5            | 1200                           | 403                            | 3.5                                                    | 0.044                        | 121                                                 | 0.0009                               |
| FR200-5  | 200         | 5            | 1600                           | 536                            | 3.5                                                    | 0.027                        | 161                                                 | 0.0004                               |
| FR250-5  | 250         | 5            | 2000                           | 671                            | 3.5                                                    | 0.019                        | 201                                                 | 0.0002                               |
| FR300-5  | 300         | 5            | 2400                           | 806                            | 3.5                                                    | 0.014                        | 242                                                 | 0.0001                               |
|          |             |              |                                |                                |                                                        |                              |                                                     |                                      |
| FR100-10 | 100         | 10           | 400                            | 269                            | 7                                                      | 0.7                          | 81                                                  | 0.0220                               |
| FR150-10 | 150         | 10           | 875                            | 403                            | 7                                                      | 0.4                          | 121                                                 | 0.0071                               |



### **Manufacturer of Bridge Components**

| FR200-10 | 200 | 10 | 1500 | 536 | 7    | 0.2   | 161 | 0.0033 |
|----------|-----|----|------|-----|------|-------|-----|--------|
| FR250-10 | 250 | 10 | 2000 | 671 | 7    | 0.2   | 201 | 0.0018 |
| FR300-10 | 300 | 10 | 2400 | 806 | 7    | 0.1   | 242 | 0.0011 |
|          |     |    |      |     |      |       |     |        |
| FR100-15 | 100 | 15 | 270  | 269 | 10   | 2.5   | 81  | 0.074  |
| FR150-15 | 150 | 15 | 580  | 403 | 10   | 1.2   | 121 | 0.0240 |
| FR200-15 | 200 | 15 | 990  | 536 | 10   | 0.7   | 161 | 0.0110 |
| FR250-15 | 250 | 15 | 1500 | 671 | 10   | 0.5   | 201 | 0.0061 |
| FR300-15 | 300 | 15 | 2000 | 806 | 10   | 0.4   | 242 | 0.0038 |
|          |     |    |      |     |      |       |     |        |
| FR100-20 | 100 | 20 | 200  | 269 | 14   | 5.9   | 81  | 0.175  |
| FR150-20 | 150 | 20 | 580  | 403 | 14   | 2.8   | 121 | 0.0569 |
| FR200-20 | 200 | 20 | 750  | 536 | 14   | 1.7   | 161 | 0.0261 |
| FR250-20 | 250 | 20 | 1120 | 671 | 14   | 1.2   | 201 | 0.0145 |
| FR300-20 | 300 | 20 | 1550 | 806 | 14   | 0.9   | 242 | 0.0091 |
|          |     |    |      |     |      |       |     |        |
| FR100-25 | 100 | 25 | 160  | 269 | 17.5 | 11.43 | 81  | 0.3430 |
| FR150-25 | 150 | 25 | 350  | 403 | 17.5 | 5.6   | 121 | 0.1111 |
| FR200-25 | 200 | 25 | 595  | 536 | 17.5 | 3.4   | 161 | 0.0510 |
| FR250-25 | 250 | 25 | 890  | 671 | 17.5 | 2.4   | 201 | 0.0283 |
| FR300-25 | 300 | 25 | 1240 | 806 | 17.5 | 1.8   | 242 | 0.0177 |
|          |     |    |      |     |      |       |     |        |
| FR100-30 | 100 | 30 | 135  | 269 | 21   | 19.7  | 81  | 0.5928 |
| FR150-30 | 150 | 30 | 291  | 403 | 21   | 9.6   | 121 | 0.1920 |
| FR200-30 | 200 | 30 | 500  | 536 | 21   | 5.9   | 161 | 0.0882 |
| FR250-30 | 250 | 30 | 745  | 671 | 21   | 4.1   | 201 | 0.0490 |
| FR300-30 | 300 | 30 | 1030 | 806 | 21   | 3.1   | 242 | 0.0307 |
|          |     |    |      |     |      |       |     |        |



#### Please Note That:

- Total Vertical Deflection of a bearing may vary ±15% of the Estimation which is given above and where this parameter is critical to design of the structure, the stiffness of the bearing should be ascertained by tests.
- The Friction Coefficient in calculations is considered to be 0.3. This value can be varied where the seating material of the bearings are some material other than steel or concrete.
- Maximum allowable rotation in the above table is calculated to avoid the uplift even in the minimum permitted vertical load.
- AssaFlex Engineering Department will be pleased to tailor Bearings to meet your needs and requirements in a more cost effective manner, if we have knowledge and specifications of your project.